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Background 
• Knee cartilage analysis is important: 
▫ Needed for study of cartilage morphology and 

physiology 
▫ Required for surgical planning of knee 

osteoarthritis (OA) 
 

• Lots of research in knee cartilage segmentation: 
▫ SKI10 – MICCAI 2010 Grand Challenge 
 http://www.ski10.org/ 

▫ Publications on TMI, CVIU, MRI, etc. 
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Knee Joint Anatomy 
• Three knee bones:  
▫ Femur 
▫ Tibia 
▫ Patella 

 
• Three knee cartilages: 
▫ Femoral cartilage 
▫ Tibial cartilage (2 pieces) 
▫ Patellar cartilage 
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Our Dataset 
• The Osteoarthritis Initiative (OAI) dataset  
▫ 176 volumes 

• “iMorphics” annotations 
▫ Cartilage ground truth 

• Modality 
▫ 3D MR images 

• Resolution 
▫ 0.365mm×0.365mm×0.7mm 

• Volume size 
▫ 384×384×160 

• Cohort 
▫ Progression: all subjects show 
 symptoms of OA 

4 



Challenges 
• Large appearance variations 
▫ Inhomogeneous intensities and textures 
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Naïve voxel 
classification 

would fail 

Direct graph cuts 
or random walks 

would fail Shape models 
are not reliable 

Better not to segment 
different cartilages 

separately 



Intuitions 
• Each cartilage only grows on certain regions of 

its corresponding bone surface 
 

• Bone segmentation is much easier than cartilage 
segmentation 
▫ Larger size 
▫ More regular shape 
▫ More discriminative intensity distribution 
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Existing Methods 
• Folkesson: voxel classification 
▫ Only intensity/texture features 
▫ No bone segmentation 

• Shan: atlas-based 
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Overview of Our Method 
• Diagram:  
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Bone Segmentation 
• Bone segmentation is needed to construct 

distance-based features 
 

• Bone segmentation is much easier than cartilage 
segmentation 
 

• We segment the 3 knee bones:  
▫ Femur 
▫ Tibia 
▫ Patella 
 

21 



Bone Segmentation Pipeline 
• Step 1: Construct correspondence meshes using 

Coherent Point Drift [1] 
• Step 2: Train PCA models for each bone [2] 
• Step 3: Detect bones in images using PCA models 
• Step 4: Use random walks to refine segmentation [3] 

 
• [1] A. Myronenko and X. Song. Point set registration: Coherent point drift. IEEE Transactions on 

Pattern Analysis and Machine Intelligence, 32(12):2262–2275, Dec. 2010. 
 

• [2] T. Cootes, C. Taylor, D. Cooper, and J. Graham. Active shape models–their training and 
application. Computer Vision and Image Understanding, 61(1):38–59, 1995. 
 

• [3] L. Grady. Random walks for image segmentation. IEEE Transactions on Pattern Analysis and 
Machine Intelligence, 28(11):1768–1783, Nov. 2006.  
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Bone Segmentation Pipeline 
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• Training:  
▫ Train shape models 
 

• Detecting  
1. Bounding box by 

marginal space 
learning (MSL) 

2. Model deformation 
by boundary fitting 

3. Refine with 
random walks 

 



Refinement by Random Walks 
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Segmentation by MSL 
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Segmentation by MSL 

Refined segmentation 

dilate 

erode 

random  
walks 



Bone Segmentation Performance 

27 

Femur DSC Tibia DSC Patella DSC 
Before random walks 92.37%±1.58% 94.64%±1.18% 92.07%±1.47% 
After random walks 94.86%±1.85% 95.96%±1.64% 94.31%±2.15% 

Random walks  
refinement 



Bone Segmentation Examples 
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Resulting meshes Resulting masks 
Red: femur 
Green: tibia 
Blue: patella 



Overview of Cartilage Segmentation 
• 4-class voxel classification for cartilages: 
▫ Background 
▫ Femoral cartilage 
▫ Tibial cartilage 
▫ Patellar cartilage 

• Feature for classification 
▫ Intensity-based features 
▫ Distance-based features 
▫ Semantic context features (RSID&RSPD) 

• Classifier 
▫ Multi-pass random forests (auto-context) 
▫ Only classify those voxels close to the bone surface 

(20mm) 
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Intensity-Based Features 
• Intensity:  

 
 
 

• Gradient magnitude: 
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Distance-Based Features (1) 
• Signed distances to bones 
▫ We perform signed distance transform to each 

segmented bone 
▫ The signed distances at each voxel, and their 

linear combinations comprise our features:  
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segmented bone 
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linear combinations comprise our features:  
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F: femur 
 
T: tibia 
 
P: patella 

Sum:  
Whether voxel is 
between 2 bones? 

Difference:  
Which bone is 

closer? 



Distance-Based Features (2) 
• Distances to densely registered bone landmarks  
▫ We measure the distance from a voxel to each 

landmark on the joint bone mesh 
 
 

▫ zζ is the spatial coordinates of the ζth landmark on 
the bone mesh (ζ: index of landmark) 
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Semantic Context Features (1) 
• Random shift intensity difference (RSID) 

 
 

▫ The spatial shift u is randomly generated in 
training 

 
• Distances to landmarks (f11) and RSID (f10) 

involve random parameters (ζ and u), thus they 
are both “feature groups” 
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Classifier: Random Forests 
• We use multi-class random forests as our classifier 
▫ Reasons for our choice: 

1. Although training is slow, decision is very fast 
2. Classification results are probabilities, which can be 

used to construct new features (discussed later) 
3. Very easy to implement 
4. Forest size and depth are easy to customize 
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Classifier: Random Forests 
• Training: 
▫ Use maximal entropy reduction principle 

 
▫ Tree depth: 18 

 
▫ At each non-leaf node, generate 1000 (feature, 

threshold) pairs 
 

▫ At each leaf node, compute the probability of being:  
 Background, femoral cartilage, tibial cartilage, patellar 

cartilage 
 

▫ Number of trees in a forest: 60 
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Best separates 
different classes 

Trade-off between 
computational cost 
and performance 



Multi-Pass Random Forests 
• After 1-pass random forest, we use the resulting 

probabilities to train a second pass  
• Similar idea to cascaded classifiers, auto-context, 

etc. 
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Semantic Context Features (2) 
• In the second pass, we construct probability 

features and random shift probability difference 
(RSPD) features 
 
 
 
 
 
▫ The shift u is randomly generated in training 
▫ Similar to random shift intensity difference 

features 
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Probability Maps from Multi-Pass 
• Image, 1st pass and 2nd pass probability map of 

femoral cartilage 
• We can see, in each new pass we get cleaner 

results 
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Graph Cuts Refinement 
• The multi-label graph cuts algorithm 
▫ 4 labels: 
 Background 
 Femoral cartilage 
 Tibial cartilage 
 Patellar cartilage 

▫ Algorithm [4] 
 α-expansion 
 α-β-swap 

 
[4] Yuri Boykov, Olga Veksler, Ramin Zabih, “Fast Approximate Energy Minimization 

via Graph Cuts,” TPAMI, 2001.  
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Multi-label Graph Cuts 
• Target: 
▫ Minimize 

 
 
 
 

▫ f: label configuration 
▫ P: the set of all voxels 
▫ N: neighborhood system 
▫ Dp: regional energy 
▫ Vp,q: boundary energy  
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Graph Configuration 
• Regional energy: 

 
 

• Boundary energy: 
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Graph Configuration 
• Regional energy: 

 
 

• Boundary energy: 
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Graph Configuration 
• Regional energy: 

 
 

• Boundary energy: 
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Parameters: 
K, λ, σ 

Probability from 
multi-pass forests 



Experiments 
• Dataset: 
▫ As mentioned before, we use 176 volumes from 

OAI 
 

• Evaluation protocol: 
▫ We perform a three-fold cross validation 

 
• Measurement: 
▫ We report the Dice similarity coefficient (DSC) of 

three cartilages 
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Experimental Results 
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• Dataset: 
▫ We are using the largest dataset (176 volumes) 
▫ D1, D2 and D3 are 3 subsets for cross validation 

• Remarks: 
▫ Our method has competitive DSC performance, but 

since people use different datasets, these numbers are 
not directly comparable in the strict sense 

 
 



Example Segmentation 
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Red: 
Femoral cart. 
 
Green:  
Tibial cart. 
 
Blue: 
Patellar cart. 
 
Upper row: 
Our result 
 
Lower row: 
Ground truth 



Comparative Study 
• How does each component contribute to final 

performance: 
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Comparative Study 
• How does each component contribute to final 

performance: 
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Comparative Study 
• How does each component contribute to final 

performance: 
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Comparative Study 
• How often is each feature used in resulting 

forests: 
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Comparative Study 
• How often is each feature used in resulting 

forests: 
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Distances to landmarks 
and semantic context 

features are very useful! 



Conclusions 
1. We have built a complete system for 3D MR 

segmentation of knee bones and cartilages.  
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Conclusions 
1. We have built a complete system for 3D MR 

segmentation of knee bones and cartilages.  
 

 Segmentation of one volume including 3 bones 
and 3 cartilages takes about 2 minutes on our 
machine.  
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Conclusions 
2. Our method and system produce highly 

accurate segmentation results. The reported 
DSC is close to or higher than those reported 
in literature.  
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Conclusions 
2. Our method and system produce highly 

accurate segmentation results. The reported 
DSC is close to or higher than those reported 
in literature.  
 

 However, the DSC numbers are not directly 
comparable in the strict sense, since people use 
different dataset.  

 
 Our dataset is the largest one compared with 

others’ work.  
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Conclusions 
3. The distance to densely registered landmarks 

is a very effective feature. It replaces the 
estimation of bone-cartilage interface (BCI).  
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Conclusions 
3. The distance to densely registered landmarks 

is a very effective feature. It replaces the 
estimation of bone-cartilage interface (BCI).  
 

 Moreover, it is a wise way to combine shape 
models and learning-based methods. It 
encodes the spatial constraints between bones 
and cartilages into the random forests.  

 
 We expect good performance of this method in 

the segmentation of other objects (e.g. organs) 
and other modalities (e.g. CT, ultrasound).  
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